Skip to contents

This function computes the Kendall's correlation for each row vector in x. See the Details section below for further information.

Usage

rowKendallCor(
  x,
  y,
  alternative = c("two.sided", "greater", "less"),
  conf.level = 0.95,
  ...
)

Arguments

x

matrix or data.frame.

y

numeric vector of data values. Must have the same length as ncol(x).

alternative

character string indicating the alternative hypothesis for each row of x. It must be one of "two.sided" (default), "greater" or "less".

conf.level

numerical value or numeric vector of length nrow(x). The confidence levels of the intervals. All values must be in the range of \([0:1]\) or NA.

...

further arguments to cor.test

Value

A list containing two elements:

statistic

A numeric vector, the values of the test statistic

significance

A numeric vector, the p-values of the selected test

Details

It is a wrapper to cor.test function.

Author

Alessandro Barberis

Examples

#Seed
set.seed(1010)

#Data
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(20)

#Compute
rowKendallCor(x = x, y = y)
#> $statistic
#>   [1]  88 113 110  93  76 109 115  93  89  64 113  93  55 106 110  58  78 104
#>  [19]  75  77  61 101 109 101  77 100  90  96 100  95  93 110  71  81 103  99
#>  [37]  85 109  77  83  97  93  87 102  87  96  82  97  92 116  97  62 117  95
#>  [55]  97  78 113  89  75  94 103 113 120  94  93  91 101  84 113 103 126  93
#>  [73]  80 103  99  85 107  88 109  82 108  55 108 103  94 104  70  63 103 123
#>  [91] 120  80 117 120  74  96  84  91  80  76
#> 
#> $significance
#>   [1] 0.677108239 0.259839989 0.351394858 0.923502331 0.233266557 0.385857151
#>   [7] 0.208628398 0.923502331 0.724636221 0.046768937 0.259839989 0.923502331
#>  [13] 0.009056382 0.500609627 0.351394858 0.016406081 0.288378196 0.585858446
#>  [19] 0.208628398 0.259839989 0.028328627 0.724636221 0.385857151 0.724636221
#>  [25] 0.259839989 0.773219475 0.773219475 0.974466903 0.773219475 1.000000000
#>  [31] 0.923502331 0.351394858 0.128413511 0.385857151 0.630798946 0.822682885
#>  [37] 0.542422145 0.385857151 0.259839989 0.460523794 0.923502331 0.923502331
#>  [43] 0.630798946 0.677108239 0.630798946 0.974466903 0.422250282 0.923502331
#>  [49] 0.872841460 0.185883043 0.923502331 0.033643947 0.164976406 1.000000000
#>  [55] 0.923502331 0.288378196 0.259839989 0.724636221 0.208628398 0.974466903
#>  [61] 0.630798946 0.259839989 0.112604127 0.974466903 0.923502331 0.822682885
#>  [67] 0.724636221 0.500609627 0.259839989 0.630798946 0.046768937 0.923502331
#>  [73] 0.351394858 0.630798946 0.822682885 0.542422145 0.460523794 0.677108239
#>  [79] 0.385857151 0.422250282 0.422250282 0.009056382 0.422250282 0.630798946
#>  [85] 0.974466903 0.585858446 0.112604127 0.039762137 0.630798946 0.074025729
#>  [91] 0.112604127 0.351394858 0.164976406 0.112604127 0.185883043 0.974466903
#>  [97] 0.500609627 0.822682885 0.351394858 0.233266557
#>