Function reference
Main Screening Function
This function provides easy access and uniform syntax to the screening methodologies.
-
screen()
- Feature Screening
-
featscreen()
- Constructor of the
featscreen
class
-
is.featscreen()
- Check a
featscreen
object
-
print(<featscreen>)
- Print a
featscreen
object
-
getScreeningMethodId()
- Get the screening method id
-
getMultiresponseAggregationMethodId()
- Get the multi-response aggregation method id
-
getSelectionMethodId()
- Get the selection method id
-
getSummary()
- Get the screening summary
-
getFeatureDimensionality()
- Get the dimension of the feature space
-
getFeatureNames()
- Get the feature names
-
getScreenedFeatures()
- Get the screened features
-
getFeatureRanks()
- Get the feature ranks
-
selectByCutoff()
- Select by Cutoff
-
selectByRanking()
- Select by Ranking
-
selectByPercentile()
- Select by Percentile
-
selectByFpr()
- Select by False Positive Rate (FPR)
-
selectByFdr()
- Select by False Discovery Rate
Supervised Biostatistical Functions
These supervised functions are used to compute statistic and significance values used in the screening process.
-
rowEBayesStatistics()
- Empirical Bayes Moderated Statistics
-
rowModeratedT()
- Empirical Bayes Moderated t-Statistic
-
rowModeratedOneWayAnova()
- Empirical Bayes Moderated F-Statistic
-
rowSamStatistics()
- Significance Analysis of Microarrays
Supervised Statistical Functions
These statistical test functions are used to compute the statistic and significance values used in the screening process.
-
rowCor()
- Row Correlations
-
rowPearsonCor()
- Pearson's Correlation
-
rowSpearmanCor()
- Spearman's Correlation
-
rowKendallCor()
- Kendall's Correlation
-
rowTwoSampleT()
- Two-sample t-Test
-
rowEqualVarT()
- Student's t-Test
-
rowUnequalVarT()
- Welch's t-Test
-
rowPairedT()
- Paired t-Test
-
rowTwoSampleWilcoxonT()
- Two-Sample Wilcoxon Rank Sum and Signed Rank Tests
-
rowWilcoxonT()
- Wilcoxon Rank-Sum Test
-
rowPairedWilcoxonT()
- Wilcoxon Signed-Rank Test
-
rowOneWayAnova()
- Fit an Analysis of Variance Model
-
rowEqualVarOneWayAnova()
- Fit an Analysis of Variance Model
-
rowUnequalVarOneWayAnova()
- Fit an Analysis of Variance Model
-
rowKruskalWallis()
- Kruskal-Wallis Rank Sum Test
-
rowPearsonChiSq()
- Pearson's Chi-squared Test of Independence
-
rowCoxPH()
- Fit Univariate Proportional Hazards Regression Model
Unupervised Statistical Functions
These unsupervised statistical functions are used to compute the statistic values used in the screening process.
-
rowMissingValueRatio()
- Missing Value Ratio
-
rowAboveMedianFreqRatio()
- Above-Median Frequency Ratio
-
rowAboveMinFreqRatio()
- Above-Minimum Frequency Ratio
-
rowMedians()
- Medians
-
rowVariability()
- Variability
-
sd()
- Standard Deviation
-
rsd()
- Relative Standard Deviation (Coefficient of Variation)
-
iqr()
- Interquartile Range
-
mad()
- Median Absolute Deviation
-
snr()
- Signal-to-noise Ratio
-
vmr()
- Variance-to-mean Ratio
-
efficiency()
- Efficiency
-
rowFilterByMissingValueRatio()
- Filter by Missing Value Ratio
-
rowFilterByAboveMedianRatio()
- Filter by Above-Median Frequency Ratio
-
rowFilterByAboveMinRatio()
- Filter by Above-Minimum Frequency Ratio
-
rowFilterByMedianAboveMinExpr()
- Filter by Median Above Minimum Expression
-
rowFilterByLowVariability()
- Filter by Low Variability
-
multiresponse()
- Combine multi-response
-
defaultRanking()
- Default Ranking
-
listAvailableScreeningMethods()
- Available Screening Methods
-
listAvailableSelectionMethods()
- Available Selection Methods
-
listDefaultRankingOptions()
- Default Ranking Options
-
listAvailableScreeningFunctions()
- Available Screening Functions
-
listAvailableSelectionFunctions()
- Available Selection Functions
-
getStatFunction()
- Get Statistical Function
-
getSelectionFunction()
- Get Selection Function
-
Logger()
- Logger Class Constructor
-
getLogLine()
- Log Line