Function reference
Main Screening Function
This function provides easy access and uniform syntax to the screening methodologies.
-
screen() - Feature Screening
-
featscreen() - Constructor of the
featscreenclass
-
is.featscreen() - Check a
featscreenobject
-
print(<featscreen>) - Print a
featscreenobject
-
getScreeningMethodId() - Get the screening method id
-
getMultiresponseAggregationMethodId() - Get the multi-response aggregation method id
-
getSelectionMethodId() - Get the selection method id
-
getSummary() - Get the screening summary
-
getFeatureDimensionality() - Get the dimension of the feature space
-
getFeatureNames() - Get the feature names
-
getScreenedFeatures() - Get the screened features
-
getFeatureRanks() - Get the feature ranks
-
selectByCutoff() - Select by Cutoff
-
selectByRanking() - Select by Ranking
-
selectByPercentile() - Select by Percentile
-
selectByFpr() - Select by False Positive Rate (FPR)
-
selectByFdr() - Select by False Discovery Rate
Supervised Biostatistical Functions
These supervised functions are used to compute statistic and significance values used in the screening process.
-
rowEBayesStatistics() - Empirical Bayes Moderated Statistics
-
rowModeratedT() - Empirical Bayes Moderated t-Statistic
-
rowModeratedOneWayAnova() - Empirical Bayes Moderated F-Statistic
-
rowSamStatistics() - Significance Analysis of Microarrays
Supervised Statistical Functions
These statistical test functions are used to compute the statistic and significance values used in the screening process.
-
rowCor() - Row Correlations
-
rowPearsonCor() - Pearson's Correlation
-
rowSpearmanCor() - Spearman's Correlation
-
rowKendallCor() - Kendall's Correlation
-
rowTwoSampleT() - Two-sample t-Test
-
rowEqualVarT() - Student's t-Test
-
rowUnequalVarT() - Welch's t-Test
-
rowPairedT() - Paired t-Test
-
rowTwoSampleWilcoxonT() - Two-Sample Wilcoxon Rank Sum and Signed Rank Tests
-
rowWilcoxonT() - Wilcoxon Rank-Sum Test
-
rowPairedWilcoxonT() - Wilcoxon Signed-Rank Test
-
rowOneWayAnova() - Fit an Analysis of Variance Model
-
rowEqualVarOneWayAnova() - Fit an Analysis of Variance Model
-
rowUnequalVarOneWayAnova() - Fit an Analysis of Variance Model
-
rowKruskalWallis() - Kruskal-Wallis Rank Sum Test
-
rowPearsonChiSq() - Pearson's Chi-squared Test of Independence
-
rowCoxPH() - Fit Univariate Proportional Hazards Regression Model
Unupervised Statistical Functions
These unsupervised statistical functions are used to compute the statistic values used in the screening process.
-
rowMissingValueRatio() - Missing Value Ratio
-
rowAboveMedianFreqRatio() - Above-Median Frequency Ratio
-
rowAboveMinFreqRatio() - Above-Minimum Frequency Ratio
-
rowMedians() - Medians
-
rowVariability() - Variability
-
sd() - Standard Deviation
-
rsd() - Relative Standard Deviation (Coefficient of Variation)
-
iqr() - Interquartile Range
-
mad() - Median Absolute Deviation
-
snr() - Signal-to-noise Ratio
-
vmr() - Variance-to-mean Ratio
-
efficiency() - Efficiency
-
rowFilterByMissingValueRatio() - Filter by Missing Value Ratio
-
rowFilterByAboveMedianRatio() - Filter by Above-Median Frequency Ratio
-
rowFilterByAboveMinRatio() - Filter by Above-Minimum Frequency Ratio
-
rowFilterByMedianAboveMinExpr() - Filter by Median Above Minimum Expression
-
rowFilterByLowVariability() - Filter by Low Variability
-
multiresponse() - Combine multi-response
-
defaultRanking() - Default Ranking
-
listAvailableScreeningMethods() - Available Screening Methods
-
listAvailableSelectionMethods() - Available Selection Methods
-
listDefaultRankingOptions() - Default Ranking Options
-
listAvailableScreeningFunctions() - Available Screening Functions
-
listAvailableSelectionFunctions() - Available Selection Functions
-
getStatFunction() - Get Statistical Function
-
getSelectionFunction() - Get Selection Function
-
Logger() - Logger Class Constructor
-
getLogLine() - Log Line