This function computes the Spearman's correlation for each row
vector in x
.
See the Details section below for further information.
Usage
rowSpearmanCor(
x,
y,
alternative = c("two.sided", "greater", "less"),
conf.level = 0.95,
...
)
Arguments
- x
matrix
ordata.frame
.- y
numeric vector of data values. Must have the same length as
ncol(x)
.- alternative
character string indicating the alternative hypothesis for each row of
x
. It must be one of"two.sided"
(default),"greater"
or"less"
.- conf.level
numerical value or numeric vector of length
nrow(x)
. The confidence levels of the intervals. All values must be in the range of \([0:1]\) orNA
.- ...
further arguments to
cor.test
Value
A list containing two elements:
- statistic
A numeric vector, the values of the test statistic
- significance
A numeric vector, the p-values of the selected test
Details
It is a wrapper to cor.test
function.
Examples
#Seed
set.seed(1010)
#Data
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(20)
#Compute
rowSpearmanCor(x = x, y = y)
#> $statistic
#> [1] 1550 1002 1048 1334 1772 1064 836 1384 1482 1944 1042 1398 2118 1072 1044
#> [16] 2020 1650 1192 1708 1672 1962 1156 1044 1218 1720 1172 1440 1392 1218 1324
#> [31] 1388 998 1818 1614 1102 1260 1478 1048 1782 1562 1254 1374 1496 1192 1428
#> [46] 1278 1586 1304 1400 906 1352 1976 856 1278 1324 1656 932 1392 1700 1338
#> [61] 1080 1006 864 1288 1380 1448 1192 1546 1016 1178 738 1442 1624 1202 1298
#> [76] 1550 1148 1374 1172 1644 1100 2086 990 1218 1374 1106 1884 1986 1184 818
#> [91] 818 1614 854 932 1798 1300 1526 1404 1664 1754
#>
#> $significance
#> [1] 0.484202379 0.293205108 0.367829058 0.992391679 0.152315540 0.396168703
#> [7] 0.107575160 0.866179629 0.630454425 0.041987538 0.357515292 0.831278236
#> [13] 0.006888333 0.410789108 0.360934072 0.020559898 0.305443868 0.662617486
#> [19] 0.223791737 0.272540640 0.035780800 0.581232598 0.360934072 0.723888577
#> [25] 0.208932277 0.616864796 0.728677101 0.846201667 0.723888577 0.987319786
#> [31] 0.856179824 0.287203118 0.112171039 0.364372006 0.468215881 0.826316171
#> [37] 0.639580201 0.367829058 0.142825467 0.460326820 0.811469747 0.891264115
#> [43] 0.598935898 0.662617486 0.757611736 0.871187188 0.414490572 0.936659068
#> [49] 0.826316171 0.170512887 0.946778134 0.031475535 0.123454784 0.871187188
#> [55] 0.987319786 0.296235458 0.199406427 0.846201667 0.234081771 0.982248374
#> [61] 0.425705285 0.299285372 0.130262923 0.896294086 0.876199602 0.709584427
#> [67] 0.662617486 0.492298434 0.314828152 0.630454425 0.050690771 0.723888577
#> [73] 0.347374223 0.685958524 0.921498955 0.484202379 0.563763030 0.891264115
#> [79] 0.616864796 0.314828152 0.464262599 0.010089051 0.275434002 0.723888577
#> [85] 0.891264115 0.476174627 0.068967376 0.028661115 0.644162476 0.094622879
#> [91] 0.094622879 0.364372006 0.121794087 0.199406427 0.128535931 0.926549607
#> [97] 0.533776867 0.816411747 0.284231482 0.170512887
#>