Computes the two-sample Wilcoxon test for each feature.
See the Details section below for further information.
Usage
rowWilcoxonT(
x,
g,
alternative = c("two.sided", "greater", "less"),
null = 0,
exact = NA,
correct = TRUE
)
Arguments
- x
matrix
ordata.frame
.- g
a vector or factor object giving the group for the corresponding elements of
x
.- alternative
character string or vector of length
nrow(x)
. The alternative hypothesis for each row ofx
. Values must be one of"two.sided"
(default),"greater"
or"less"
.- null
numerical value or numeric vector of length
nrow(x)
. The true values of the difference in means between the two groups of observations for each row.- exact
logical or NA (default) indicator whether an exact p-value should be computed (see Details). A single value or a logical vector with values for each observation.
- correct
logical indicator whether continuity correction should be applied in the cases where p-values are obtained using normal approximation. A single value or logical vector with values for each observation.
Value
A list containing two elements:
- statistic
A numeric vector, the values of the test statistic
- significance
A numeric vector, the p-values of the selected test
Details
It is a wrapper to row_wilcoxon_twosample
function.
Examples
#Seed
set.seed(1010)
#Data
x = matrix(rnorm(100 * 20), 100, 20)
g = sample(c(0,1), 20, replace = TRUE)
#Compute
rowWilcoxonT(x = x, g = g)
#> $statistic
#> [1] 49 56 22 43 29 53 47 45 48 46 70 80 47 56 10 52 46 78 39 36 35 46 54 41 64
#> [26] 19 43 68 52 59 54 32 31 41 50 16 43 60 36 59 47 34 52 29 17 49 46 45 27 33
#> [51] 25 48 58 38 40 62 58 40 31 51 46 43 41 40 55 49 52 38 60 45 67 68 36 36 60
#> [76] 49 65 30 45 35 26 78 31 45 48 59 39 51 61 47 23 38 59 50 50 49 54 38 26 48
#>
#> $significance
#> [1] 0.816795666 0.437796698 0.067492260 0.877296182 0.210603715 0.588028896
#> [7] 0.938467492 1.000000000 0.877296182 1.000000000 0.055675955 0.004669763
#> [13] 0.938467492 0.437796698 0.003405573 0.642647059 1.000000000 0.008462332
#> [19] 0.642647059 0.485423117 0.437796698 1.000000000 0.535552116 0.757301342
#> [25] 0.157430341 0.036945304 0.877296182 0.081114551 0.642647059 0.311377709
#> [31] 0.535552116 0.311377709 0.274922601 0.757301342 0.757301342 0.018601651
#> [37] 0.877296182 0.274922601 0.485423117 0.311377709 0.938467492 0.392879257
#> [43] 0.642647059 0.210603715 0.023606811 0.816795666 1.000000000 1.000000000
#> [49] 0.157430341 0.350696594 0.114628483 0.877296182 0.350696594 0.588028896
#> [55] 0.699174407 0.210603715 0.350696594 0.699174407 0.274922601 0.699174407
#> [61] 1.000000000 0.877296182 0.757301342 0.699174407 0.485423117 0.816795666
#> [67] 0.642647059 0.588028896 0.274922601 1.000000000 0.096800826 0.081114551
#> [73] 0.485423117 0.485423117 0.274922601 0.816795666 0.134803922 0.241357069
#> [79] 1.000000000 0.437796698 0.134803922 0.008462332 0.274922601 1.000000000
#> [85] 0.877296182 0.311377709 0.642647059 0.699174407 0.241357069 0.938467492
#> [91] 0.081114551 0.588028896 0.311377709 0.757301342 0.757301342 0.816795666
#> [97] 0.535552116 0.588028896 0.134803922 0.877296182
#>