Skip to contents

This function tests for association between each row vector in x and y, using one of Pearson's product moment coefficient, Kendall's tau or Spearman's rho.

See the Details section below for further information.

Usage

rowCor(
  x,
  y,
  alternative = c("two.sided", "greater", "less"),
  method = c("pearson", "kendall", "spearman"),
  conf.level = 0.95,
  ...
)

Arguments

x

matrix or data.frame.

y

numeric vector of data values. Must have the same length as ncol(x).

alternative

character string or vector of length nrow(x). The alternative hypothesis for each row of x. Values must be one of "two.sided" (default), "greater" or "less".

method

character string indicating how to measure the association. Available options are:

"pearson"

Pearson's product moment coefficient

"kendall"

Kendall's tau

"spearman"

Spearman's rho

conf.level

numerical value or numeric vector of length nrow(x). The confidence levels of the intervals. All values must be in the range of \([0:1]\) or NA.

...

further arguments to cor.test

Value

A list containing two elements:

statistic

A numeric vector, the values of the test statistic

significance

A numeric vector, the p-values of the selected test

Details

See the following functions for each specific implementation:

"pearson"

rowPearsonCor

"kendall"

rowKendallCor

"spearman"

rowSpearmanCor

Author

Alessandro Barberis

Examples

#Seed
set.seed(1010)

#Data
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(20)

#Compute
rowCor(x = x, y = y)
#> $statistic
#>   [1] -1.562687801  0.858321163  0.637163042  0.128135983 -0.862080975
#>   [6]  0.598241121  1.212132923  0.069343265  0.456858601 -1.898899711
#>  [11]  0.184459567 -0.339190941 -3.007207334  0.336614733  0.617155315
#>  [16] -2.481769120 -0.861755878  0.455952916 -0.949161902 -1.068207821
#>  [21] -1.907514254  0.108342487  0.853011464  0.394641243 -0.975175694
#>  [26]  0.864453082 -0.276135713  0.397042009  0.135430056 -0.462988385
#>  [31] -0.361123747  1.461778755 -0.511219918 -1.082653209  0.004997978
#>  [36]  0.479980846 -0.828477145  1.318518418 -1.782204536 -0.998935926
#>  [41]  0.811267590  0.778846860  0.063646496  0.807429722 -0.287617366
#>  [46]  0.229086538 -0.614220396  0.407021288  0.548241677  1.311804083
#>  [51]  1.083779739 -1.889587922  0.546321065  0.100801842  0.101202574
#>  [56] -2.561201443  1.583823429 -0.730766741 -1.048014217 -0.319427625
#>  [61]  0.579442956  0.862395912  1.496058535 -0.397273649 -0.474920610
#>  [66] -0.235018504  0.728067837 -0.876637740  0.034058214  0.550229079
#>  [71]  2.323603386 -1.613238444 -1.424067416 -0.119842224  0.400028195
#>  [76] -0.809365837  0.194148780  0.353125443 -0.662352249 -0.767740894
#>  [81] -0.007011127 -2.543693293  0.726090012  0.420845627 -0.732734821
#>  [86]  0.724719987 -1.240322324 -2.395388623  0.245192102  0.731896295
#>  [91]  1.163954688 -0.976294907  1.556730531  1.753549523 -1.007125364
#>  [96] -0.408247435 -0.468959552 -0.592881300 -1.119771117 -1.314586148
#> 
#> $significance
#>   [1] 0.135536058 0.402000439 0.532039815 0.899462121 0.399982690 0.557132482
#>   [7] 0.241132739 0.945480943 0.653237919 0.073727039 0.855715230 0.738391072
#>  [13] 0.007565871 0.740300062 0.544860776 0.023168646 0.400156896 0.653876795
#>  [19] 0.355108974 0.299544083 0.072539393 0.914922608 0.404861217 0.697744610
#>  [25] 0.342397511 0.398713075 0.785589293 0.696004803 0.893774879 0.648921201
#>  [31] 0.722210668 0.161041167 0.615410709 0.293253139 0.996067183 0.637021871
#>  [37] 0.418250745 0.203861755 0.091592575 0.331066169 0.427809764 0.446188963
#>  [43] 0.949953191 0.429960192 0.776924829 0.821384399 0.546755396 0.688791618
#>  [49] 0.590261338 0.206071641 0.292766609 0.075030171 0.591553341 0.920822078
#>  [55] 0.920508440 0.019634212 0.130645338 0.474327179 0.308501179 0.753079743
#>  [61] 0.569472138 0.399813976 0.151966290 0.695837027 0.640554996 0.816847228
#>  [67] 0.475937508 0.392233089 0.973205569 0.588925893 0.032056824 0.124086665
#>  [73] 0.171532459 0.905935620 0.693843169 0.428874501 0.848233670 0.728096097
#>  [79] 0.516137234 0.452595599 0.994483097 0.020366462 0.477119661 0.678849812
#>  [85] 0.473154954 0.477939550 0.230781390 0.027687610 0.809081343 0.473654184
#>  [91] 0.259639152 0.341857780 0.136941960 0.096519592 0.327222224 0.687907437
#>  [97] 0.644728453 0.560636387 0.277531110 0.205153701
#>