Function reference
-
renoir() - Evaluation of a learning method
-
list_supported_learning_methods() - Supported Learning Methods
-
list_supported_sampling_methods() - Supported Sampling Methods
-
list_supported_performance_metrics() - Supported Performance Metrics
-
list_supported_unsupervised_screening_methods() - Supported Unsupervised Screening
-
list_supported_supervised_screening_methods() - Supported Supervised Screening
Unsupervised Screening
These functions are used to pre-process the predictors matrix and reduce its dimensionality
-
filter() - Unsupervised Screening
-
filter_by_na() - Filter by missing values
-
filter_by_intensity() - Filter by intensity
-
filter_by_variability() - Filter by variability
Supervised Screening
These functions are used to pre-process the predictors matrix and reduce its dimensionality in a supervised manner
-
ebayes_screener() - Compute the significance of the filtering test
-
permutation_screener() - Compute the significance of the filtering test
-
multiresponse_screener() - Multi-response screen
-
default_screener() - Compute the significance of the filtering test
-
screen() - Features screening
-
absolute_error() - Absolute Error
-
absolute_percentage_error() - Absolute Percentage Error
-
mean_absolute_error() - Mean Absolute Error
-
mean_absolute_percentage_error() - Mean Absolute Percentage Error
-
mean_squared_error() - Mean Squared Error
-
root_mean_squared_error() - Root-Mean-Square Error
-
mean_squared_log_error() - Mean Squared Logarithmic Error
-
r2_score() - R squared
-
area_under_roc_curve() - Area Under the ROC Curve
-
f1_score() - F1 Score
-
fbeta_score() - F-beta Score
-
sensitivity() - Sensitivity
-
precision() - Precision
-
classification_error_rate() - Classification Error Rate
-
accuracy_score() - Accuracy Classification Score
-
threat_score() - Jaccard Score
-
confusion_matrix() - Confusion Matrix
-
confusion_matrix_outcomes() - Confusion Matrix outcomes
-
ACC() - Accuracy
-
BAS() - Balanced accuracy score
-
BMI() - Informedness, bookmaker informedness (BM)
-
CSI() - Threat score (TS), critical success index (CSI), Jaccard index
-
DOR() - Diagnostic odds ratio
-
ERR() - Error rate
-
F1S() - F1 score
-
FBS() - Fbeta score
-
FDR() - False discovery rate (1 - PPV)
-
FMI() - Fowlkes-Mallows index
-
FNR() - False negative rate, miss rate, (1 - TPR)
-
FOR() - False omission rate (1 - NPV)
-
FPR() - False positive rate, probability of false alarm, fall-out, (1 - TNR)
-
MCC() - Matthews correlation coefficient
-
MKD() - Markedness (MK),deltaP
-
NLR() - Negative likelihood ratio (LR-)
-
NPV() - Negative predictive value (1 - FOR)
-
PLR() - Positive likelihood ratio (LR+)
-
PPV() - Positive predictive value, precision (1 - FDR)
-
PRT() - Prevalence threshold (PT)
-
PRV() - Prevalence
-
TNR() - True negative rate, specificity (SPC), selectivity, (1 - FPR)
-
TPR() - True Positive Rate
Quantifying uncertainty
These functions are used to compute the confidence interval for the mean performance metric
-
ci() - Confidence Interval
-
ciwm() - Confidence Interval for the Weighted Mean
-
sewm() - Standard Error of Weighted Mean
-
uevarwm() - Unbiased Variance of the Weighted Mean
-
quantify() - Quantify Uncertainty
-
learn() - Learn
-
renoir_gbm() - Generalized Boosted Regression Modeling (GBM)
-
renoir_gknn() - Generalized k-Nearest Neighbors Classification or Regression
-
renoir_random_forest() - Random Forest
-
renoir_svm() - Support Vector Machine
-
renoir_glmnet() - GLM with elastic-net
-
renoir_nearest_shrunken_centroid() - Nearest Shrunken Centroid
-
train() - Train the model
-
forecast() - Forecast method
-
forecast_by_gbm() - Forecaster for GBM Model Fits
-
forecast_by_gknn() - Forecaster for Generalized kNN Model Fits
-
forecast_by_randomForest() - Forecaster for Random Forest Model Fits
-
forecast_by_svm() - Forecaster for SVM Model Fits
-
forecast_by_glmnet() - Forecaster for GLM Elastic-Net Fits
-
forecast_by_nsc() - Forecaster for Nearest Shrunken Centroid Model Fits
-
mark_gbm() - Features Marker
-
mark_gknn() - Features Marker
-
mark_randomForest() - Features Marker
-
mark_svm() - Features Marker
-
mark_glmnet() - Features Marker
-
mark_nsc() - Features Marker
-
mark() - Mark the features of the trained model
-
importance() - Compute feature importance
-
plot(<Renoir>) - Plot method for
Renoirobject
-
plot(<RenoirList>) - Plot method for
RenoirListobject
-
plot(<RenoirSummaryTable>) - Plot method for
RenoirSummaryTableobject
-
plot(<Renoir>,<missing>) - Plot method for
Renoirobject
-
summary_table() - Get the Summary of a Tested Object
-
create_report(<Renoir>) - Create an interactive report
-
create_report(<Trained>) - Create an interactive report
-
log_all(<Logger>) - Log Method
-
log_trace(<Logger>) - Log Method
-
log_debug(<Logger>) - Log Method
-
log_info(<Logger>) - Log Method
-
record_glmnet() - Features Recorder
-
record_randomForest() - Features Recorder
-
record_gbm() - Features Recorder
-
record_svm() - Features Recorder
-
record_gknn() - Features Recorder
-
record_nsc() - Features Recorder
-
record() - Features Recorder
-
Evaluated-class - Evaluator Class
-
EvaluatedList-class - EvaluatedList Class
-
Evaluator() - Evaluator Class
-
Filter() - Filter Class
-
FilterList() - FilterList Class
-
Filtered-class - Filtered Class An S4 class providing a container for the results of pre-processing.
-
Forecaster() - Forecaster Class An S4 class providing the methods to test the trained models on provided data.
-
ForecasterList() - Forecaster List Class
-
Learner(<missing>)Learner(<character>)is.Learner() - Learner Class
-
LearnerList() - Learner List Class
-
Logger() - Logger Class
-
Looper() - Looper Class An S4 class providing methods for loop constructs.
-
Marked() - Marked An S4 class to represent a marked model
-
MarkedList() - MarkedList Class An S4 class to represent a renoir trained and tested models list
-
Marker() - Marker Class An S4 class to represent a features marker.
-
Quantifier() - Quantifier Class
-
Recorder() - Recorder Class An S4 class to represent a recorder.
-
Renoir() - Renoir Class
-
Resampler() - Resampler Class An S4 class providing the re-sampling methods.
-
Sampler() - Sampler Class
-
Scorer() - Scorer Class
-
ScorerList()create_ScorerList() - ScorerList Class
-
Screened() - Screened Class
-
Screener() - Screener Class An S4 class providing the methods to perform a features screening.
-
ScreenerList() - ScreenerList Class
-
Selector() - Selector Class An S4 class providing the methods to select a model from a list.
-
Tested() - Tested An S4 class to represent a tested model
-
TestedList() - TestedList Class An S4 class to represent a renoir tuned and tested models list
-
Tester() - Tester Class An S4 class providing the methods to test the trained models on provided data.
-
TesterList() - Tester List Class
-
Trained() - An S4 class to represent a renoir trained model
-
TrainedList() - TrainedList Class An S4 class to represent a renoir trained and tested models list
-
Trainer() - Trainer Class An S4 class representing a learning method.
-
Tuned() - Tuned Class
-
TunedList() - TunedList Class An S4 class to represent a list of tuned models.
-
Tuner() - Tuner Class
-
get_sample() - Get Sample
-
get_model() - Get Trained/Tuned Model
-
stability() - Stability
-
evaluate() - Evaluate Learning Method
-
features() - Get features in the model
-
nfeatures() - Get number of features in the model
-
resample() - Resample
-
select() - Select a model
-
test() - Test
-
predict(<relaxed>) - Predict
-
signature() - Extract a signature
-
multiresponse_error() - Multi-response error