Function reference
-
renoir()
- Evaluation of a learning method
-
list_supported_learning_methods()
- Supported Learning Methods
-
list_supported_sampling_methods()
- Supported Sampling Methods
-
list_supported_performance_metrics()
- Supported Performance Metrics
-
list_supported_unsupervised_screening_methods()
- Supported Unsupervised Screening
-
list_supported_supervised_screening_methods()
- Supported Supervised Screening
Unsupervised Screening
These functions are used to pre-process the predictors matrix and reduce its dimensionality
-
filter()
- Unsupervised Screening
-
filter_by_na()
- Filter by missing values
-
filter_by_intensity()
- Filter by intensity
-
filter_by_variability()
- Filter by variability
Supervised Screening
These functions are used to pre-process the predictors matrix and reduce its dimensionality in a supervised manner
-
ebayes_screener()
- Compute the significance of the filtering test
-
permutation_screener()
- Compute the significance of the filtering test
-
multiresponse_screener()
- Multi-response screen
-
default_screener()
- Compute the significance of the filtering test
-
screen()
- Features screening
-
absolute_error()
- Absolute Error
-
absolute_percentage_error()
- Absolute Percentage Error
-
mean_absolute_error()
- Mean Absolute Error
-
mean_absolute_percentage_error()
- Mean Absolute Percentage Error
-
mean_squared_error()
- Mean Squared Error
-
root_mean_squared_error()
- Root-Mean-Square Error
-
mean_squared_log_error()
- Mean Squared Logarithmic Error
-
r2_score()
- R squared
-
area_under_roc_curve()
- Area Under the ROC Curve
-
f1_score()
- F1 Score
-
fbeta_score()
- F-beta Score
-
sensitivity()
- Sensitivity
-
precision()
- Precision
-
classification_error_rate()
- Classification Error Rate
-
accuracy_score()
- Accuracy Classification Score
-
threat_score()
- Jaccard Score
-
confusion_matrix()
- Confusion Matrix
-
confusion_matrix_outcomes()
- Confusion Matrix outcomes
-
ACC()
- Accuracy
-
BAS()
- Balanced accuracy score
-
BMI()
- Informedness, bookmaker informedness (BM)
-
CSI()
- Threat score (TS), critical success index (CSI), Jaccard index
-
DOR()
- Diagnostic odds ratio
-
ERR()
- Error rate
-
F1S()
- F1 score
-
FBS()
- Fbeta score
-
FDR()
- False discovery rate (1 - PPV)
-
FMI()
- Fowlkes-Mallows index
-
FNR()
- False negative rate, miss rate, (1 - TPR)
-
FOR()
- False omission rate (1 - NPV)
-
FPR()
- False positive rate, probability of false alarm, fall-out, (1 - TNR)
-
MCC()
- Matthews correlation coefficient
-
MKD()
- Markedness (MK),deltaP
-
NLR()
- Negative likelihood ratio (LR-)
-
NPV()
- Negative predictive value (1 - FOR)
-
PLR()
- Positive likelihood ratio (LR+)
-
PPV()
- Positive predictive value, precision (1 - FDR)
-
PRT()
- Prevalence threshold (PT)
-
PRV()
- Prevalence
-
TNR()
- True negative rate, specificity (SPC), selectivity, (1 - FPR)
-
TPR()
- True Positive Rate
Quantifying uncertainty
These functions are used to compute the confidence interval for the mean performance metric
-
ci()
- Confidence Interval
-
ciwm()
- Confidence Interval for the Weighted Mean
-
sewm()
- Standard Error of Weighted Mean
-
uevarwm()
- Unbiased Variance of the Weighted Mean
-
quantify()
- Quantify Uncertainty
-
learn()
- Learn
-
renoir_gbm()
- Generalized Boosted Regression Modeling (GBM)
-
renoir_gknn()
- Generalized k-Nearest Neighbors Classification or Regression
-
renoir_random_forest()
- Random Forest
-
renoir_svm()
- Support Vector Machine
-
renoir_glmnet()
- GLM with elastic-net
-
renoir_nearest_shrunken_centroid()
- Nearest Shrunken Centroid
-
train()
- Train the model
-
forecast()
- Forecast method
-
forecast_by_gbm()
- Forecaster for GBM Model Fits
-
forecast_by_gknn()
- Forecaster for Generalized kNN Model Fits
-
forecast_by_randomForest()
- Forecaster for Random Forest Model Fits
-
forecast_by_svm()
- Forecaster for SVM Model Fits
-
forecast_by_glmnet()
- Forecaster for GLM Elastic-Net Fits
-
forecast_by_nsc()
- Forecaster for Nearest Shrunken Centroid Model Fits
-
mark_gbm()
- Features Marker
-
mark_gknn()
- Features Marker
-
mark_randomForest()
- Features Marker
-
mark_svm()
- Features Marker
-
mark_glmnet()
- Features Marker
-
mark_nsc()
- Features Marker
-
mark()
- Mark the features of the trained model
-
importance()
- Compute feature importance
-
plot(<Renoir>)
- Plot method for
Renoir
object
-
plot(<RenoirList>)
- Plot method for
RenoirList
object
-
plot(<RenoirSummaryTable>)
- Plot method for
RenoirSummaryTable
object
-
plot(<Renoir>,<missing>)
- Plot method for
Renoir
object
-
summary_table()
- Get the Summary of a Tested Object
-
create_report(<Renoir>)
- Create an interactive report
-
create_report(<Trained>)
- Create an interactive report
-
log_all(<Logger>)
- Log Method
-
log_trace(<Logger>)
- Log Method
-
log_debug(<Logger>)
- Log Method
-
log_info(<Logger>)
- Log Method
-
record_glmnet()
- Features Recorder
-
record_randomForest()
- Features Recorder
-
record_gbm()
- Features Recorder
-
record_svm()
- Features Recorder
-
record_gknn()
- Features Recorder
-
record_nsc()
- Features Recorder
-
record()
- Features Recorder
-
Evaluated-class
- Evaluator Class
-
EvaluatedList-class
- EvaluatedList Class
-
Evaluator()
- Evaluator Class
-
Filter()
- Filter Class
-
FilterList()
- FilterList Class
-
Filtered-class
- Filtered Class An S4 class providing a container for the results of pre-processing.
-
Forecaster()
- Forecaster Class An S4 class providing the methods to test the trained models on provided data.
-
ForecasterList()
- Forecaster List Class
-
Learner(<missing>)
Learner(<character>)
is.Learner()
- Learner Class
-
LearnerList()
- Learner List Class
-
Logger()
- Logger Class
-
Looper()
- Looper Class An S4 class providing methods for loop constructs.
-
Marked()
- Marked An S4 class to represent a marked model
-
MarkedList()
- MarkedList Class An S4 class to represent a renoir trained and tested models list
-
Marker()
- Marker Class An S4 class to represent a features marker.
-
Quantifier()
- Quantifier Class
-
Recorder()
- Recorder Class An S4 class to represent a recorder.
-
Renoir()
- Renoir Class
-
Resampler()
- Resampler Class An S4 class providing the re-sampling methods.
-
Sampler()
- Sampler Class
-
Scorer()
- Scorer Class
-
ScorerList()
create_ScorerList()
- ScorerList Class
-
Screened()
- Screened Class
-
Screener()
- Screener Class An S4 class providing the methods to perform a features screening.
-
ScreenerList()
- ScreenerList Class
-
Selector()
- Selector Class An S4 class providing the methods to select a model from a list.
-
Tested()
- Tested An S4 class to represent a tested model
-
TestedList()
- TestedList Class An S4 class to represent a renoir tuned and tested models list
-
Tester()
- Tester Class An S4 class providing the methods to test the trained models on provided data.
-
TesterList()
- Tester List Class
-
Trained()
- An S4 class to represent a renoir trained model
-
TrainedList()
- TrainedList Class An S4 class to represent a renoir trained and tested models list
-
Trainer()
- Trainer Class An S4 class representing a learning method.
-
Tuned()
- Tuned Class
-
TunedList()
- TunedList Class An S4 class to represent a list of tuned models.
-
Tuner()
- Tuner Class
-
get_sample()
- Get Sample
-
get_model()
- Get Trained/Tuned Model
-
stability()
- Stability
-
evaluate()
- Evaluate Learning Method
-
features()
- Get features in the model
-
nfeatures()
- Get number of features in the model
-
resample()
- Resample
-
select()
- Select a model
-
test()
- Test
-
predict(<relaxed>)
- Predict
-
signature()
- Extract a signature
-
multiresponse_error()
- Multi-response error